
Modelica-json: Transforming energy models to digitize

the control delivery process

Michael Wetter1, Jianjun Hu1, Anand Prakash1, Paul Ehrlich2,
Gabe Fierro3, Milica Grahovac1, Marco Pritoni1, Lisa Rivalin4∗, Dave Robin5

1Lawrence Berkeley National Laboratory, Berkeley, CA
2Building Intelligence Group, Portland, OR

3Gabe Fierro, University of California at Berkeley, Berkeley, CA
4Facebook, Menlo Park, CA

5BSC Softworks, Marietta, GA

Abstract

Building simulation models are typically not used to
generate the documentation required for bidding and
project delivery of commercial building systems, or
for their semantic modeling and commissioning. This
paper presents a software tool that aids in digitiz-
ing the control delivery process, spanning simulation
during design to implementation and formal verifi-
cation during commissioning. The tool can gener-
ate from Modelica models digital documentation of
control sequences. This digital documentation, along
with other project drawings and specifications can be
used for project bidding. It can also be used for im-
plementation of control sequences through machine-
to-machine translation to commercial legacy control
products, for which we are currently developing the
proposed ASHRAE Standard 231P based on the pre-
sented work. Moreover, as-installed control sequences
can be formally verified against the design specifica-
tion, and a semantic model in Brick can be exported
to aid in configuration of building analytics and fault
detection. The paper presents what we believe is the
first translation of a Modelica-implemented control
sequence to a native implementation on a commercial
control platform, using the webCTRL product line
from Automated Logic. The paper also shows how
a webCTRL implementation can be formally verified
against its Modelica specification. These use cases
have all been demonstrated with a prototype imple-
mentation that is now being further developed.

Key Innovations

• Prototyped code for end-to-end digital control
delivery process with formal verification of as-
installed control sequences.

• Reuse of simulation models for bidding and im-
plementation of control sequences, documenta-
tion of sequences, semantic modeling and formal
verification of sequences during commissioning.

∗This work was conducted while the author was an employee
of Lawrence Berkeley National Laboratory.

Practical Implications

The presented tool, and the digital language that the
tool is based on, provides a foundation to digitize
the currently manual, error-prone, paper-based con-
trol delivery process. Through the accompanying pro-
posed ASHRAE Standard 231P, this will bridge sim-
ulation with operation, allowing performance testing
of control sequences during design, export of control
documentation, and implementation on commercial
building control platforms. In view of the increased
complexity of control sequences and the current fail-
ure to deliver robust high-performance control se-
quences at scale, this should not only reduce cost and
time for control delivery, but also lead to robust im-
plementation of control sequences at the scale needed
to significantly reduce energy use of buildings.

Introduction

Optimized HVAC control sequences are critical to
achieving high performance buildings. Use of high
performance control sequences has shown to reduce
energy consumption, with a range of 20% to 30%
being common (Fernandez et al., 2017). However,
software programming errors have been reported to
be the subcategory of control-related problems that
have the largest energy impact (Barwig et al., 2002).
Moreover, the complexity of control sequences is in-
creasing: ASHRAE published control sequences for
variable air volume flow (VAV) systems in 2006 and
in 2016, with the higher-performing sequence from
2016 requiring close to one order of magnitude more
code, as measured by an implementation in the Mod-
elica Buildings Library (ASHRAE, 2006, 2018; Wet-
ter et al., 2014). Moreover, as new sequences also
need to provide load flexibility to the electrical grid,
such as through integration of Model Predictive Con-
trol (Drgoňa et al., 2020), their complexity is likely
to increase even further.

Today’s building control delivery process is largely
based on a verbose natural language specification of
the control sequences. The process has not changed



Designer Control provider Commissioning agent

submit and deliver
controls through
code generation

export
specification &
verification tests

import sequence from a
library, configure
and test it, connected to
an energy model

Vout

dT

verify against 
design specification

failed

untested

passed
dT

Vout

dT

Vout

Figure 1: Overview of process for control sequence design, export of a specification, implementation on a control
platform and verification against the specification.

much over the past several decades, and often does
not produce robust implementations even for the sim-
pler sequences from 20 years ago that were common
when Barwig et al. (2002) conducted their study.
Therefore, in view of the control complexity that we
cannot tame with today’s paper-based process, the
OpenBuildingControl (OBC) project works on digi-
tizing the control delivery process. The project ad-
dresses the need to deploy high performance, grid-
flexible control sequences at scale, taking advantage
of the fact that control sequences are, by their very
nature, expressible as code.

OBC develops a process and tools that allow to

1. use and customize control sequences from li-
braries,

2. test and contrast their performance using annual
energy modeling with Spawn of EnergyPlus (Wet-
ter et al., 2020),

3. export natural language sequence description for
documentation of the control intent and for in-
structing the building operator,

4. export point lists for bidding,

5. export a control-vendor neutral representation of
the sequence for implementation on building con-
trol product lines through machine-to-machine
translation,

6. export of semantic models for use with portable
building analytics software (Fierro et al., 2020,
2019), and

7. export of specifications for semi-automated com-
missioning of as-installed sequences (Wetter et al.,
2019).

These artifacts will be produced through the transla-
tion of control sequences that are implemented using
the Control Description Language (CDL), which is a
subset of the Modelica language that we introduced
in Wetter et al. (2018). This translation is done us-
ing the modelica-json software that is introduced in
this paper.

This paper presents the modelica-json software, de-
scribes its implementation and explains the different
formats into which control sequences can be trans-
lated. The paper also shows an example of a machine-

to-machine translation of CDL sequences to a com-
mercial building control product line, an example of
exporting a semantic model to the Brick Schema rep-
resentation (Balaji et al., 2016), and the verification
of a control sequence as-implemented in hardware rel-
ative to its CDL reference implementation.

Workflow

We will now explain the digital control delivery work-
flow for which we have been developing various soft-
ware, including the here introduced modelica-json

translator. The workflow is applicable to new build-
ings or to retrofits that will receive new control se-
quences. Figure 1 shows a high-level view of the
workflow. Starting from the left of the figure, build-
ing energy tool developers will provide libraries with
customizable control sequences. These sequences are
implemented in CDL. Sequences from these libraries
can be customized by energy modelers or controls de-
signers. Also, energy modelers or controls designers
can extend this collection of libraries, for example to
add sequences that are commonly used by their com-
pany. Using a control sequence selection and con-
figuration tool that is being developed for mechani-
cal designers, or using any general-purpose Modelica
modeling environment, a mechanical designer can se-
lect and customize the control sequence. Using build-
ing simulation, the mechanical designer can improve
the closed loop performance of the sequence, verify its
correct operation for the particular building, compare
the performance among different control sequences or
sequence configurations and ultimately select the se-
quences to be used. Next, the mechanical designer
exports a digital specification of the sequences, to-
gether with verification tests. The control contractor
then uses this specification, along with other docu-
ments provided for the project, to develop their pric-
ing proposal. The control contractor can use the CDL
directly in their product line (if compatible) or alter-
natively translate the sequence from CDL to their
proprietary control platform through code genera-
tion. The commissioning agent will take the digital
specification and the verification tests to formally test
whether the as-installed sequences produce a response
that is within specified bounds of the response of the



original specification. Optionally, and largely subject
of ongoing work, the designer or controls contractor
may also output a semantic model. This can then
aid in configuring the control logic to actual equip-
ment, in setting up point-mapping for the commis-
sioning using a process as described in Wetter et al.
(2019), and in bootstrapping self-learning elements of
the control, building analytics and system-level fault
detection and diagnostic methods. For example, if a
module of a supervisory set point scheduler requires
knowledge of the system dynamics that is acquired
through machine learning, then this module could be
initially trained on the simulation model from the
design phase, the module’s I/O can be abstracted
through the semantic model, and then the module
can be semi-automatically ported from the training
environment to the actual building control system if
this is also embodied with a semantic model.

There are also a few related workflows for other stake-
holders. For example, professional organizations such
as ASHRAE may choose to provide reference imple-
mentation of control sequences, such as for ASHRAE
Guideline 36 (ASHRAE, 2018), in CDL. These can
then be tested for correctness and for closed-loop
performance, translated by control providers to their
product lines, and used by energy modelers during
building design. Code setting bodies such as the Cal-
ifornia Energy Commission may choose to not only
provide in natural language certain control require-
ments, but also provide a CDL implementation for
use by designers in energy simulation, by control
providers for implementation in their product lines,
and by code officials for code compliance checks.

All these workflows require translation of control se-
quences from CDL to other representations. For this
purpose, we have been developing the modelica-json
software that is introduced in the next section.

Modelica-JSON software

The modelica-json software consist of two elements
that are distributed as one application: A main appli-
cation that is implemented using the JavaScript run-
time environment Node.js, and a Modelica parser
that uses Java and the Antlr package (Parr, 2012).
The software works on Windows, Linux and macOS.

The two elements of the software are as follows: The
main application takes via command line arguments
the Modelica filename and the output format specifi-
cation. It then invokes the Java component to trans-
late the Modelica files into an internal JSON for-
mat that we refer to here as raw-JSON. Because this
raw-JSON representation is very verbose and hard to
parse, the main application simplifies it into a more
compact JSON representation that is easier to work
with for downstream applications. Depending on the
user-provided command line arguments, this compact
JSON representation is written to disk, or it is fur-

ther processed by the main application to generate
other output formats such as HTML, SVG diagrams
or MS Word. The user can also specify two modes via
the command line arguments: A Modelica mode and
a CDL mode. In the Modelica mode, a usual Mod-
elica model can be translated, whereas in the CDL
mode, the translator also checks the provided model
for conformance with the CDL specification.

The second element of the software is the Java com-
ponent that is automatically invoked by the main ap-
plication. The Java component uses the Antrl pack-
age to translate Modelica into the raw-JSON format.
Using the Antlr lexical grammar file developed for
the Modelica language, it generates an abstract syn-
tax tree (AST) for the Modelica file. Next, it visits
each node of this AST and processes it to produce the
verbose raw-JSON output. This output is then fur-
ther processed with the main application as described
above. The Java component is compiled into a Java
Archive file that is distributed with modelica-json.
It only needs to be updated when a developer makes
changes to the parser. Future work may convert this
part of the tool from Java to JavaScript.

Output formats

This section discusses the different output formats
that can be generated with modelica-json.

All output formats are generated by running

node modelica -json/app.js \

-m cdl -f fileName -o format

where fileName is the name of the Modelica file that
is the top-level controller, and format is the output
format, which can either be json, html, docx or svg.
For export of a Brick model, the json output is used
together with the JSON to Brick translator.1

JSON

The JSON output serves as representation from
which the output formats HTML, SVG, MS Word,
Brick and translation to proprietary control program-
ming languages such as ALC webCTRL are gener-
ated. In CDL mode, with the json output option,
modelica-json will create one JSON file of the con-
troller. This file also includes the information of the
control blocks that are used to hierarchically compose
the top-level controller. The file has all information
required to translate the controller to downstream ap-
plications.

There is also a schema file available that can be used
to validate the JSON files of control sequences that
were generated from CDL.

Compared to the CDL representation, the JSON
representation is significantly larger. For ex-
ample, consider the VAV terminal unit con-
troller of ASHRAE Guideline 36 that is im-

1The JSON to Brick translator is available at https://

github.com/gtfierro/shepherding-metadata.

https://github.com/gtfierro/shepherding-metadata
https://github.com/gtfierro/shepherding-metadata


TZonHeaSet

TZonCooSet

TZon

TDis

VDis_flow

TSupAHU

ppmCO2

nOcc

uWin

uOpeMod

yDam_actual

yVal

yDam

yZonTemResReq

yZonPreResReq

actAirSet

actAirSet

CO2

nOcc

uOpeMod

uWin

VActCooMax_flow

VActCooMin_flow

VActMin_flow

VActHeaMin_flow

VActHeaMax_flow

VOccDisMin_flow

damVal

VActCooMax_flow

VActCooMin_flow

VActHeaMax_flow

VActHeaMin_flow

VActMin_flow

uCoo

uHea

THeaSet

TSup

TDis

TZon

VDis_flow

yDam

yHeaVal

VDisSet_flow

TDisHeaSet

uOpeMod

sysReq
TZonCooSet

TZon

uCoo

VDisSet_flow

VDis_flow

uDam

TDisHeaSet

TDis

uHeaVal

yZonTemResReq

yZonPreResReq

yHeaValResReq

yHeaPlaReq

PID

conHeaLoo

PID

conCooLoo

isUnOcc

=

conIntUn

k=Buildings.Controls.OBC.ASHRAE.G36_PR1.Types.OperationModes.unoccupied

not

isNotUn

(a) Schematic view of the VAV terminal unit controller
generated by modelica-json based on the Modelica model.

(b) Implementation in ALC webCTRL of the controller
shown above as translated by modelica-json. The graphic
is the visual representation of the EIKON software.

Figure 2: VAV terminal unit controller that is part of
the control sequence which has been translated from
CDL to EIKON for use in ALC webCTRL.

plemented in Buildings.Controls.OBC.ASHRAE.

G36_PR1.TerminalUnits.Controller in the Model-
ica Buildings Library. Figure 2a shows the top-level
block diagram of the controller. The controller is
composed hierarchically and consists of 42 Modelica
blocks, of which 38 are elementary CDL blocks. The
Modelica files that are used to implement this con-
troller, including all control blocks that are needed
to hierarchically compose the controller, consist of
about 7,500 lines and 260,000 characters (not count-
ing leading and trailing white spaces). In comparison,
the JSON file has about 100,000 lines and 2,200,000
characters. Hence, it is about 10 times larger than
the Modelica representation. While it is significantly
larger, many tools exists to parse and manipulate
JSON. On the other hand, Modelica, while easy to
read by humans, is harder to parse programmatically.
Therefore, to limit the barrier for other tool develop-
ers to write applications, JSON has been used as an
intermediate format which can then be used by down-
stream applications.

HTML

The HTML output format is used to document con-
trol sequences in a format that does not require any
knowledge of Modelica by the user. For example,
the HTML output could be used for operator instruc-
tions or for documentation of repositories of control
sequences.

The html output option will create one HTML file
for the sequence. It will also create image files of the
control block diagrams in SVG format, and display
them as part of the HTML representation.

Furthermore, point lists can be added to the HTML
output. These can be used by the mechanical designer
to specify installation requirements, and by the con-
trol provider as input for pricing calculations.

The HTML documentation is structured by first list-
ing the top-level block, and then listing recursively
all blocks that are used to implement the controller.
For each block, the info section of the Modelica im-
plementation is processed and hyperlinks to all pa-
rameters, inputs, outputs and other blocks are added
automatically. Next, tables with all parameters, in-
puts and outputs are added. Afterwards, public and
protected blocks and their configurations are listed,
and hyperlinks to their respective documentation are
added. Lastly, all connections are listed, and the
block diagram is included before the documentation
of the next block starts.

SVG Diagram

With the svg option, an SVG diagram of the con-
trol sequence can be generated. This can for example
be used for documentations that do not require the
full HTML output. For example, Figure 2a has been
generated by the SVG generator of modelica-json.



MS Word

The MS Word output format is used to generate an
editable MS Word document of the control sequence.
The MS Word output is generated by translating the
HTML output using the JavaScript html-docx-js li-
brary. This document contains the same structure
and content as the HTML output, including SVG files
and hyperlinks.

ALC webCTRL

webCTRL is a commercial control product line from
Automated Logic, a Carrier company (ALC). It is
based on a block diagram language called EIKON
that has predefined elementary blocks, and a line pro-
gramming language for adding custom-blocks.

Translating a control sequence from CDL to ALC
webCTRL involves two steps. First, the JSON rep-
resentation is generated from CDL using modelica-

json as described above. This step only uses open-
source software. Next, a separate software program is
used to translate this JSON representation to EIKON
code. Because this step is specific to the control prod-
uct line, and may require proprietary knowledge that
is specific to the control product line, this step may
be done with proprietary code, which is the case for
the JSON to EIKON translation.

If this becomes commercially available, it provides
to ability to greatly reduce the cost, complexity, and
errors involved in moving a control sequence from de-
sign into implementation.

To standardize this translation, an ASHRAE stan-
dards project team has been formed to develop
ASHRAE Standard 231P ”CDL - A Control Descrip-
tion Language for Building Environmental Control
Sequences”. This standard is intended to make the
exchange of information between controls design, sim-
ulation and implementation open and interoperable.

Brick

Brick is a graph-based data model. It describes the
equipment, assets, subsystems and data sources in
buildings and the relationships between them. Data-
driven applications can use the formal axioms and
semantic definitions of Brick to discover and retrieve
the metadata and data required for their operation.

To generate a Brick model, modelica-json is used
to parse the Modelica system model that contains
the HVAC, building and control models, and output
its JSON representation. This JSON representation
is then further processed using the JSON to Brick
translator. This second software identifies the entities
and the relationships between them, as this closely
resembles the structure of a Brick model. It then
maps Modelica classes to Brick classes, for which we
developed a mapping dictionary for a limited set of
classes of the Modelica Buildings Library. For exam-
ple, every instance of the Modelica class Buildings

.Fluid.Sensor.Temperature can be translated into

a brick:Temperature_Sensor entity. Relationships
between Brick entities are discovered through inspect-
ing the Modelica connect clause statements which
describe how the ports of Modelica objects relate.
Based on type information associated with the ports,
the translator determines which Brick relationship is
most appropriate for connecting two Brick entities. In
Brick, these relationships can be sequential, declared
in Brick as brick:feeds, or compositional, declared
as brick:hasPart or brick:hasPoint Fierro et al.
(2020). To generate a useful Brick model, a Model-
ica model that also contains the HVAC and building,
as opposed to only the controls, should be used be-
cause relationships are inferred from the HVAC and
building model.

Examples

We will now present three examples that use the
modelica-json translator. The first two examples
use a multizone VAV system with a control sequence
from ASHRAE Guideline 36, of which the control se-
quence shown in Figure 2a is part of. The first exam-
ple translates the control sequence from CDL to ALC
webCTRL. The second example exports a Brick se-
mantic model from the Modelica model that contains
this control sequence. The third example uses a sin-
gle zone VAV control sequence from ASHRAE Guide-
line 36. It uses its JSON output from modelica-json

together with its CDL representation to verify the
implementation of the control sequence in an ALC
webCTRL controller.

Export of CDL to ALC webCTRL

With the cooperation of ALC, we completed a proof
of concept demonstration to show the feasibility of
translating from CDL into the proprietary commer-
cial control language ALC webCTRL. We used the
VAV multi-zone air handler control sequence from
ASHRAE Guideline 36, public review draft 1. The
same approach can also be used for other sequences.

The air handler unit (AHU) control sequence, and the
terminal unit controller that is shown in Figure 2a,
was exported to the JSON representation. From this
JSON representation, the control blocks were trans-
lated to EIKON. This step included the following fur-
ther steps, which are all specific to the target control
platform: For composite control blocks that include
in a hierarchical structure lower level controllers, the
lower level controllers were further translated recur-
sively. Once only elementary blocks were encoun-
tered, they were translated to EIKON code. For some
blocks, a one-to-one mapping to native EIKON object
was performed. For example, for a logical or-block,
a one-to-one mapping is possible. Other blocks re-
quired generation of OCL line programming code that
is used by EIKON. For example, CDL has an adder
that outputs y = k1 u1 + k2 u2 for gains k1 and k2
and inputs u1 and u2, whereas in EIKON, the na-



tive add-block outputs y = u1 + u2. For such cases,
OCL line programming code has been generated un-
less k1 = k2 = 1. Next, parameter values were as-
signed, and in some cases evaluated because CDL al-
lows statements for parameter propagation that are
not supported by EIKON. Lastly, components were
laid out graphically, and inputs and outputs were con-
nected and laid out graphically. CDL declares the
graphical layout, and CDL allows lines to be on top
of each other, while EIKON does not. Hence, some
graphical changes were needed at this step. All these
operations are specific to the control target platform,
and some may require proprietary knowledge of the
control target platform. Therefore, they reside in the
second step of the translator which is proprietary.

At the end of this translation process, an implemen-
tation of the control logic in EIKON is available. For
example, Figure 2b shows the translation of the CDL
control logic shown in Figure 2a. Once translated,
the EIKON implementation need not know anything
about CDL.

This proof of concept demonstrated the ability to
have a digital workflow that started with CDL, ex-
ported it to JSON, and then translated it into the
ALC proprietary programming language.

Export of a semantic model using Brick

For this example, we translated the model Buildings
.Examples.VAVReheat.Guideline36 from the Mod-
elica Buildings Library. Figure 3 shows the heat-
ing coil, the cooling coil and the supply air fan
of the AHU in the Modelica model and its corre-
sponding Brick translation. To generate the Brick
model, we first generated the JSON representation
of the Modelica model using the Modelica mode of
modelica-json. This JSON file, together with a dic-
tionary that maps Modelica classes to Brick classes,
were then used as input to the Brick translator. As
mentioned previously, during the translation process,
Modelica classes were mapped to Brick equivalents
for equipment, devices and sensors. For example,
the heating coil that is modeled using the Model-
ica DryCoilCounterFlow model was mapped to the
Brick Heating_Coil entity. Through such mappings,
instances of Modelica classes become Brick entities
in the exported Brick graph. By traversing the Mod-
elica connect statements, the relationships between
the different Brick entities were discovered. For in-
stance, the connect statements between the cooCoi

and fanSup was extracted as a brick:feeds rela-
tionship. For further discussions of the translation
and use of this Brick model, see Fierro et al. (2020).

Verification of as-installed controller

Another tool that uses modelica-json is the se-
quence verification tool that is being developed as
part of the OpenBuildingControl project at LBNL.
The objective of this tool is to formally verify that
control sequences installed in actual control hard-

(a) Partial view of an air handler unit in the Modelica
model.

heaCoi cooCoi
feeds

brick:Heating_Coil

type

fanSup
feeds

brick:Cooling_Coil

type

brick:Fan

type

(b) Corresponding Brick instance of the components
shown above.

Figure 3: Excerpt from Buildings.Example.

VAVReheat.Guideline36 in (a) Modelica and (b) its
translation in Brick.

ware conform to their CDL specification. Figure 4
describes the different steps involved in testing a con-
troller loaded with a control sequence. The steps are
as follows: First, modelica-json is used to convert
the CDL sequence from Modelica to its JSON rep-
resentation from which the tool extracts the names,
units and values of parameters, and the names and
units of the input and output variables of the control
sequence. Using the OpenModelica simulator (Fritz-
son et al., 2020), the CDL representation of the se-
quence is simulated to produce the simulated refer-
ence control output time series. Next, to test the
real controller, the names and units of all input vari-
ables, output variables and parameters are extracted
from the JSON representation and mapped to the cor-
responding point names and units of the controller.
Now, the controller can be executed. Using BACnet,
input values are set and output values are trended
to a file. Finally, the sequence comparison step com-
pares the output time series from the controller with
the simulated reference output time series. This com-
parison is done using the pyfunnel software.2

Figure 5 is an example output for the active heating
set point after a failed verification of a zone set point
temperature sequence for a single zone variable air
volume controller from ASHRAE Guideline 36. Note
that for this illustration, we manually introduced a
control error near t = 60 seconds to show how a
failed test looks like. The shaded region represents
user-configurable tolerance bounds. Around t = 60
seconds, the controller output exceeds this bounds,
leading to a failed test.

Not shown here is a related use case for which the
verification software may be used: If a controller is
already in operation to control a real HVAC system,
then its input time series and output time series may

2The pyfunnel software is available from https://github.

com/lbl-srg/funnel.

https://github.com/lbl-srg/funnel
https://github.com/lbl-srg/funnel


Control
sequence
in CDL

with test
definitions

Control
input
(.csv)

modelica

-json

translator

Modelica
simulation
environ-

ment

Point
list and

parameter
specifi-
cation
(.json)

Point
mapping

Point map
and con-
figuration

parameters

BACnet
writer

Control
sequence in
hardware

BACnet
reader

Trended
control
output
(.csv)

Simulated
control
output
(.csv)

Sequence
verification

Pass or
fail

Figure 4: Different files (yellow) and processes
(green) involved in the sequence verification tool.

be trended. Then, the CDL reference model of that
sequence can be simulated, using the trended control
input time series as input. The CDL reference model
then simulates the expected control output time se-
ries. The verification step then checks whether the
trended control output is within the user-specified tol-
erance of the expected, simulated control output.

Ongoing and future work

The following work, through collaborations among
National Labs, academia and industry, is all ongo-
ing in support of a model-based, digitized workflow
for the development and deployment of high perfor-
mance control sequences for grid-interactive, efficient
buildings. CDL and its JSON representation are at
the time of this writing reviewed by the ASHRAE

0 50 100 150 200 250 300

18

18.5

19

19.5

20

0
0.05
0.1

0.15

CDL Reference Output
Controller Output
Error

time [seconds]

A
ct

iv
e 

H
ea

ti
ng

 S
et

po
in

t 
[d

eg
C
]

er
ro

r 
[y

]

Figure 5: An illustration of the output chart generated
by the sequence verification tool for a zone heating set
point. The shaded region is the region of acceptance,
and the blue trajectory shows the error between refer-
ence and actual control output.

Standard 231P committee whose purpose is to stan-
dardize a control description language for mechanical
systems, active facades and lighting. Other activities
under development include

1. libraries of control sequences in CDL for distribu-
tion with the Modelica Buildings Library,

2. a next-generation simulation engine, Spawn of
EnergyPlus that will enable integrated building
energy and control design and deployment work-
flows (Wetter et al., 2020),

3. a control sequence selection and configuration
tool called linkage that will export control se-
quences in CDL, a Spawn energy model and docu-
mentation that support the construction process,

4. tools for export of semantic models from Modelica
to Brick, and

5. tools for formal verification of control sequences.

Conclusions

By using a declarative modeling language, in our case
a small subset of Modelica called Control Descrip-
tion Language, we developed and demonstrated pro-
totype tools for digitizing the control delivery process.
This process has benefits for many stakeholders: Con-
trol specialists can implement libraries of customiz-
able control sequences. Energy modelers can use se-
quences from these libraries, customize them to their
building, and then test, improve and compare the
closed loop performance of different control sequences
using energy simulation. Next, they can export a digi-
tal specification of the sequence, including their natu-
ral language description, for bidding, implementation
and commissioning. Control providers can build tools
for semi-automated bidding and for import of the se-
quences into their control product platform. Commis-
sioning agents can use the digital control logic specifi-
cation for formal verification of as-installed sequences.
Building analytics and FDD providers can use the se-
mantic model to bootstrap their software deployment.



Government agencies and professional organizations
can assess the closed loop control performance when
developing new energy codes, and then provide a dig-
ital specification of the sequences to lower the barrier
for implementation by control providers, mechanical
engineers, simulation tool developers, and for code
compliance checking.

While we demonstrated feasibility and benefits
through our prototype implementation, future work
needs to focus on rising the Technology Readiness
Level needed for adoption by industry.

Acknowledgment

This research was supported by the Assistant Sec-
retary for Energy Efficiency and Renewable En-
ergy, Office of Building Technologies of the U.S.
Department of Energy, under Contract No. DE-
AC02-05CH11231, the California Energy Commis-
sion’s Electric Program Investment Charge (EPIC)
Program, and Automated Logic, a Carrier company.

This work emerged from the IBPSA Project 1, an
international project conducted under the umbrella
of the International Building Performance Simula-
tion Association (IBPSA). Project 1 will develop and
demonstrate a BIM/GIS and Modelica Framework for
building and community energy system design and
operation.

References
ASHRAE (2006). Sequences of Operation for Com-

mon HVAC Systems. ISBN 1-931862-98-2.

ASHRAE (2018, June). ASHRAE Guideline 36-
2018 – High Performance Sequences of Operation
for HVAC systems.

Balaji, B., A. Bhattacharya, G. Fierro, J. Gao,
J. Gluck, D. Hong, A. Johansen, J. Koh, J. Ploen-
nigs, Y. Agarwal, M. Berges, D. Culler, R. Gupta,
M. B. Kjærgaard, M. Srivastava, and K. White-
house (2016). Brick: Towards a unified meta-
data schema for buildings. In Proceedings of the
3rd ACM International Conference on Systems for
Energy-Efficient Built Environments, BuildSys ’16,
New York, NY, USA, pp. 41–50. Association for
Computing Machinery.

Barwig, F. E., J. M. House, C. J. Klaassen, M. M.
Ardehali, and T. F. Smith (2002, August). The na-
tional building controls information program. Sum-
mer Study on Energy Efficiency in Buildings, Pa-
cific Grove, CA. ACEEE.

Drgoňa, J., J. Arroyo, I. Cupeiro Figueroa, D. Blum,
K. Arendt, D. Kim, E. P. Ollé, J. Oravec, M. Wet-
ter, D. L. Vrabie, and L. Helsen (2020). All you
need to know about model predictive control for
buildings. Annual Reviews in Control 50, 190–232.
doi: 10.1016/j.arcontrol.2020.09.001.

PNNL (2017, May). Impacts of Commercial Building
Controls on Energy Savings and Peak Load Reduc-
tion.

Fierro, G., A. K. Prakash, C. Mosiman, M. Pritoni,
P. Raftery, M. Wetter, and D. E. Culler (2020).
Shepherding metadata through the building lifecy-
cle. In Proceedings of the 7th ACM International
Conference on Systems for Energy-Efficient Build-
ings, Cities, and Transportation, BuildSys ’20, New
York, NY, USA, pp. 70–79. Association for Com-
puting Machinery.

Fierro, G., M. Pritoni, M. Abdelbaky, D. Lengyel,
J. Leyden, A. K. Prakash, P. Gupta, P. Raftery,
T. Peffer, G. Thomson, and D. E. Culler (2019).
Mortar: An open testbed for portable building
analytics. ACM Transactions on Sensor Net-
works 16 (1), 7:1–7:31. doi: 10.1145/3366375.

Fritzson, P., A. Pop, K. Abdelhak, A. Ashgar,
B. Bachmann, W. Braun, D. Bouskela, R. Braun,
L. Buffoni, F. Casella, R. Castro, R. Franke,
D. Fritzson, M. Gebremedhin, A. Heuermann,
B. Lie, A. Mengist, L. Mikelsons, K. Moudgalya,
L. Ochel, A. Palanisamy, V. Ruge, W. Schamai,
M. Sjölund, B. Thiele, J. Tinnerholm, and
P. Östlund (2020). The OpenModelica Integrated
Environment for Modeling, Simulation, and Model-
Based Development. Modeling, Identification and
Control 41 (4), 241–295. doi: 10.4173/mic.2020.4.1.

Parr, T. (2012, September). The Definite ANTLR4
Reference. Dallas, TX: The Pragmatic Program-
mers.

Wetter, M., K. Benne, A. Gautier, T. S. Nouidui,
A. Ramle, A. Roth, H. Tummescheit, S. Mentzer,
and C. Winther (2020, September). Lifting the
garage door on Spawn, an open-source BEM-
controls engine. In Proc. of Building Performance
Modeling Conference and SimBuild, Chicago, IL,
USA, pp. 518–525.

Wetter, M., A. Gautier, M. Grahovac, and J. Hu
(2019, September). Verification of control se-
quences within OpenBuildingControl. In 16-th
IBPSA Conference, pp. 885–892. International
Building Performance Simulation Association.

Wetter, M., M. Grahovac, and J. Hu (2018, Au-
gust). Control description language. In 1st Amer-
ican Modelica Conference, Cambridge, MA, USA.

Wetter, M., W. Zuo, T. S. Nouidui, and X. Pang
(2014). Modelica Buildings library. Journal of
Building Performance Simulation 7 (4), 253–270.
doi: 10.1080/19401493.2013.765506.

https://doi.org/10.1016/j.arcontrol.2020.09.001
https://doi.org/10.1145/3366375
https://doi.org/10.4173/mic.2020.4.1
https://doi.org/10.1080/19401493.2013.765506

	Output formats
	JSON
	HTML
	SVG Diagram
	MS Word
	ALC webCTRL
	Brick
	Export of CDL to ALC webCTRL
	Export of a semantic model using Brick
	Verification of as-installed controller
	Conclusions

